
EE Senior Design Task 4

R. M Schafer 1 Revised: 9/22/08

Task 4 Due: See web page

Task Purpose: Using the Logic Analyzer

Each team has, in its kit, a USB based logic analyzer. This device allows you to look at
digital signals. The purpose of this task is to familiarize the team with the use of this
device.

Video tutorials describing the use of the USBEE logic analyzer can be found on the
company web site. The software should already be loaded on the computers in the
ELC. Note that the software can be loaded on any machine, but only works in demo
mode unless the test pod is plugged in. (The pod number will be listed as “demo” in this
case.)

1. Write a program that sets port D to be an output port and increments the value
continually, with a 10 msec delay between increments. Connect the leads 0-3 on
the logic analyzer to the header pins for port d bits 0 – 3. Connect the logic
analyzer pod ground pin to a pin on the microcontroller board labeled “gnd”.
Verify that you can view the signals on the lower 4 bits of port D as shown below.
(Notes: The colors of the wires from the pod follow the resistor code order for
your convenience. Also, the leads from the logic analyzer should fit over the
header pins without using the “E-Z Hooks”. This is a much more secure way to
make connections to the logic analyzer.)

2. Using the cursor measurement tools, determine the period of the top square
wave.

3. Repeat part 1, but without any added delay. (You should only need a single
statement inside a while(1) construct.) Recapture the signal. Can you visually

EE Senior Design Task 4

R. M Schafer 2 Revised: 9/22/08

determine that the LED’s connected to port D changing? Copy a screen capture
of this logic analyzer screen and include it in your task report.

4. Repeat part 3 and acquire the logic trace with the sampling period set to 1M
samples per second. Make multiple measurements of the width of the high and
low portions of the highest frequency square wave (D0). Repeat with the
sampling rate set to 24M sps. What are your conclusions?

5. Load the terminal program you used to test you serial I/O routines, and connect
lead 0 of the logic analyzer to C6 (the transmit pin out of the onboard USART)
and lead 1 to C7 (the receive pin going to the onboard USART.) Set the logic
analyzer to trigger when the signal on C7 changes from high to low. When you hit
acquire, the logic analyzer will indicate that it is waiting for the specified trigger.
Type your name into HyperTerminal and view the logic analyzer output. You
should see the characters you typed and the corresponding echo on the
analyzer.

6. Use the serial decode function (under the view menu) to decode the characters
you typed. Copy a screen capture of this screen and include it in your task
report.

In more complex programs, it is often necessary to trigger the logic analyzer at some
particular place in the code. One way to do this is to set some unused I/O pin to be an
output, toggle it in the code at the desired spot, and use this signal to trigger the logic
analyzer. For example, suppose port A1 is unused. It could be used to trigger the logic
analyzer by doing the following:

/* setup bit a1 as an output and define
 a macro to toggle the bit */

volatile bit a1@PORTA.1; // name bit
#define toggle_a1 a1=1;nop();nop();a1=0; // define toggle
trisa.1 = 0; // makeoutput
a1=0; // start at zero

With this code included in your program, you can make bit 1 of port a toggle with the
statement

toggle_a1;

You can use this bit to trigger the logic analyzer at the point in your code where you
want to start looking at what the signals are doing.

This can be very useful in a number of situations. For example, if you want to know if
you are getting an interrupt, you can place the toggle_a1 statement in the interrupt
service routine. If the logic analyzer doesn’t trigger, you aren’t getting an interrupt.

